Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical properties and defect model of tin-doped indium oxide layers

Identifieur interne : 000801 ( Main/Exploration ); précédent : 000800; suivant : 000802

Electrical properties and defect model of tin-doped indium oxide layers

Auteurs : RBID : ISTEX:339_1982_Article_BF00619080.pdf

English descriptors

Abstract

Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationscSn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm−3 and minimum resistivities ϱ=1.3×10−4 Ω cm are obtained if the layers are doped withcSn≈9 at. % and annealed in an atmosphere of oxygen partial pressurepO2 ⋦10−20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationcSn≲4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K1 ·pO2−1/8 ·(3 ×1010 × cSn −N)1/4 with an equilibrium constantK1=1.4×1015 cm−9/4bar1/8, determined from our measurements.

DOI: 10.1007/BF00619080

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title>Electrical properties and defect model of tin-doped indium oxide layers</title>
<author>
<name>G. Frank</name>
<affiliation wicri:level="3">
<mods:affiliation>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen, Fed. Rep. Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>H. Köstlin</name>
<affiliation wicri:level="3">
<mods:affiliation>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen, Fed. Rep. Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="RBID">ISTEX:339_1982_Article_BF00619080.pdf</idno>
<date when="1982">1982</date>
<idno type="doi">10.1007/BF00619080</idno>
<idno type="wicri:Area/Main/Corpus">000767</idno>
<idno type="wicri:Area/Main/Curation">000767</idno>
<idno type="wicri:Area/Main/Exploration">000801</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>73.60. Fw</term>
<term>81.40. Rs</term>
<term>82.60. Hc</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationscSn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm−3 and minimum resistivities ϱ=1.3×10−4 Ω cm are obtained if the layers are doped withcSn≈9 at. % and annealed in an atmosphere of oxygen partial pressurepO2 ⋦10−20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationcSn≲4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K1 ·pO2−1/8 ·(3 ×1010 × cSn −N)1/4 with an equilibrium constantK1=1.4×1015 cm−9/4bar1/8, determined from our measurements.</div>
</front>
</TEI>
<mods xsi:schemaLocation="http://www.loc.gov/mods/v3 file:///applis/istex/home/loadistex/home/etc/xsd/mods.xsd" version="3.4" istexId="83c6ddcf9c33afdb04f77bba9a382f599f350b5d">
<titleInfo lang="eng">
<title>Electrical properties and defect model of tin-doped indium oxide layers</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<affiliation>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen, Fed. Rep. Germany</affiliation>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Köstlin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<affiliation>Philips GmbH Forschungslaboratorium Aachen, D-5100, Aachen, Fed. Rep. Germany</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre>Contributed Papers</genre>
<genre>Original Paper</genre>
<originInfo>
<publisher>Springer-Verlag, Berlin/Heidelberg</publisher>
<dateCreated encoding="w3cdtf">1981-10-05</dateCreated>
<dateCaptured encoding="w3cdtf">1982-01-11</dateCaptured>
<dateValid encoding="w3cdtf">2004-10-26</dateValid>
<copyrightDate encoding="w3cdtf">1982</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="eng">Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationscSn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm−3 and minimum resistivities ϱ=1.3×10−4 Ω cm are obtained if the layers are doped withcSn≈9 at. % and annealed in an atmosphere of oxygen partial pressurepO2 ⋦10−20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationcSn≲4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K1 ·pO2−1/8 ·(3 ×1010 × cSn −N)1/4 with an equilibrium constantK1=1.4×1015 cm−9/4bar1/8, determined from our measurements.</abstract>
<subject lang="eng">
<genre>PACS</genre>
<topic>73.60. Fw</topic>
<topic>81.40. Rs</topic>
<topic>82.60. Hc</topic>
</subject>
<relatedItem type="series">
<titleInfo type="abbreviated">
<title>Appl. Phys. A</title>
</titleInfo>
<titleInfo>
<title>Applied Physics A</title>
<subTitle>Materials Science and Processing</subTitle>
<partNumber>Year: 1982</partNumber>
<partNumber>Volume: 27</partNumber>
<partNumber>Number: 4</partNumber>
</titleInfo>
<genre>Archive Journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">1982-04-01</dateIssued>
<copyrightDate encoding="w3cdtf">1982</copyrightDate>
</originInfo>
<subject usage="primary">
<topic>Physics</topic>
<topic>Optical and Electronic Materials</topic>
<topic>Nanotechnology</topic>
<topic>Characterization and Evaluation Materials</topic>
<topic>Surfaces and Interfaces, Thin Films</topic>
<topic>Condensed Matter</topic>
<topic>Operating Procedures, Materials Treatment</topic>
</subject>
<identifier type="issn">0947-8396</identifier>
<identifier type="issn">Electronic: 1432-0630</identifier>
<identifier type="matrixNumber">339</identifier>
<identifier type="local">IssueArticleCount: 13</identifier>
<recordInfo>
<recordOrigin>Springer-Verlag, 1982</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="doi">10.1007/BF00619080</identifier>
<identifier type="matrixNumber">Art2</identifier>
<identifier type="local">BF00619080</identifier>
<accessCondition type="use and reproduction">MetadataGrant: OpenAccess</accessCondition>
<accessCondition type="use and reproduction">AbstractGrant: OpenAccess</accessCondition>
<accessCondition type="restriction on access">BodyPDFGrant: Restricted</accessCondition>
<accessCondition type="restriction on access">BodyHTMLGrant: Restricted</accessCondition>
<accessCondition type="restriction on access">BibliographyGrant: Restricted</accessCondition>
<accessCondition type="restriction on access">ESMGrant: Restricted</accessCondition>
<part>
<extent unit="pages">
<start>197</start>
<end>206</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1982</recordOrigin>
<recordIdentifier>339_1982_Article_BF00619080.pdf</recordIdentifier>
</recordInfo>
</mods>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000801 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000801 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:339_1982_Article_BF00619080.pdf
   |texte=   Electrical properties and defect model of tin-doped indium oxide layers
}}

Wicri

This area was generated with Dilib version V0.5.81.
Data generation: Mon Aug 25 10:35:12 2014. Site generation: Thu Mar 7 10:08:40 2024